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SUMMARY

The psrtial differential.equation for the perturbation velocity
potential is examined for free-stream Mach numbers close to and equal
to one. It is found that, under the assumptions of linemized theory,
solutions can be found consistent with the theory for lifting-surface
problems both in stationary three-dimwisional flow and in unsteady
two-dimensional flow. Several examples are solved including a three-
dimensional swept+ack wing and a two-dknsional harmonically
oscillating wing, both for a free+tream Mach nuniberequal to one.

.
?3?’I!RODUCTION

Much of the recent progress in the theoretical analysis of
compressible-flowfields is attributable to the successful applica—
tion of linearization methods. Although the basic assumptions used
in conventional linearized theory appear at first glance to be higlly
restrictive, it has been found that, just as in the analogous case of
thin-airfoil theory for incompressible flow, the methods have many
fields of utilization adequate for most engineering purposes. Since
the basic methods are so well lmown and depend on such relatively
simple mathematical tools”,it appears obvious that the range of
applicability of the theory should be explored completely. Such is
the purpose of the present report. It has been more or less tacitly
presumed in the past that such applications cannot treat cases for
which the flight velocity is near the speed of sound. In the study
of two-dimensiond steady-state problems in airfoil theory, this
presumption is certainly true. The Frandtl+lauert and Ackeret rules
for variation of pressure coefficient with free+treamllach nuniber
in the subsonic and supersonic reg-imes,respectively, are clearly
invalid for Mach numbers near one, since perturbation velocities

--- ---. .-----— -. - —.-— ~- -,. .-——— -.—. . .. . . ..-. .—-. . . . . .-
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2 It4CATN ~0. 1824

become arbitrarily large. In this case, ltiearized theory therefore
predicts its inability to treat such problems. On the other hand, ‘
if linesr methods exe applied to nonstationary two-dimensional
airfoil and particular steady-state, three+imensional., liftti-
surface problems at sonic speeds, a consistent theory resul.tssince
solutions are found which yield perturbation velocities of the same
order of magnitude as those calculated for free-stream Wch numbers
of, say, 0.6 or 1.5.

Unfortunately, arbitrary thiclmess distributions at sonic speeds
cannot be studied by linear theory h the steady state sincej in
general, the theory predicts infinite Tressure differences between
the wing surface and infinity. In the particular case of a yawed,
smtricel w3ng of infinite aspect ratio, the results we ~ howeverj
again consistent with the theory and yield pressure distributions
which me the same as those detemined by using only the component
of free-stream velocity normal to the leading edge. The derivation
of this latter result for a free-stream Mach nuuiberof one will be
given.

The difficulty of not being able to ticlude thickness effects
in general, together with the uncertainty of the magnitude of the
viscous effects, leaves the question as to the limitations of such
a linear theory in application to practical wing shapes. Such a
question can certainly not be resol~ed by mathematical reasoning
alone. The etient to which the fluid medium can be idealized at
these speeds is left, for the’time being, unsettled and it rematis
for experiment to determine whether the consistent mathematical
results which are obtained from the linearized equations provide
reasonably exact predictions. In this connection, it should be
mntioned that the few exper~ntal. results available for the total
lift on thin triangular whgs at Mach numbers near one tend to
confirm the theory. But even if more detailed experimental results

. tidicate that further refinements are necesssry, there is still
little doubt but that the ltiear potential solutions wild.provide a
valuable basis for more exact extensions of theory.

m

The present report is divided into three parts. In the first
part, the ltiearizaticn of the partial differential equation for
the velocity potential is carried out in some detail for steady-
state conditions. A by~roduct of this derivation is the nonlinear
form of the equation for two-dimensional flow which was used by
von ‘Kern& (reference 1) to determine his similarity rules for tran-
sonic flow. The equation for unsteady twtihensional flow based on
the same assum@ions is also given. The second pert of the report

L!
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is restricted to two-dimensional unsteady problems for values of
Mach nunibernear one. The prfncipal contribution of this section is
the evaluation of the change with t~ of the pressure distribution
over an airfoil stating suddenly from rest at a speed close to that
of sound. Such an idealized problem involves a step function in
velocity in which the airfoil has zero velocity for all negative
values and near sonic velocity for aU positive values of time. lRrom
these results the initial build- of lift canbe calculated for Mach
numbers nesr one, although the eventual value of the lift cannot be
found by lbar ~thods. Further application can also be made to
problems in flutter and gust loads. The third part of the report
treats the steady-state three+limensional problem. Both lifting
surfaces and symmetrical nonlifting wings are considered and it is
seen that in the former case consistent solutions are obtained by
particularly simple means. These solutions represent the limiting
case of both mibsonic and supersonic lifting+mrface theory and
give, for example, the same value of lift-curve slope at the speed
of sound-that was obtained for the supersonic triangular wing by
Stew@ (reference 2).

A list of symbols is given h the appendix.

PART I -THE LINEARIZED EQUATIONS OF

Steady State
.

The nonlinear partial differential
velocity potential @ of an isentropic
in the form

where
a is

equation

MOTION

satisfied by the
flow field can be expressed

the subscript notation is used to
the local speed of sound givenby

(1)

indicate differentiation and
the relation

(k)2=&’F-Y~2[($’-ll}
(2)

.
In this latter equation V. and ~ are, respectively, velocity
and Mach nuniberof the free stream, Y is the ratio of specific

—---- —. ..— ,.—— y.— - —. ——..—. -- . .._—



4 NACATN NO. 18P4

heats (for air, Y=l.4), and V is local velocity.

Introducing the perturbation velocity potential.q, where

it is possible to express equation (1) in terms of the derivatives
of q and the parameters ~ sndV .

?
To begin the linearization

of the resul.t~ equation, the coeff cients of the second ordered
derivatives of @ are expanded tiMaclaurti series with ascending

powers of ~, ~, ~. The convergence is assured provided
V. V. V.

(7-1) , 2U U’+V2+W2

2 %( )1
<1 “

< + V02

or, in a slightly modified form, provided

IV2 _ V02 <2~.5a02

(4)

(5)

If the assumption is now made that ~, ~, ~<<1 so that
V. V. V.

second and higher powers in the perturbation velocities can be
neglected in comparison with one, the partial differential equation
csn be simplified to the form

–2%zv7vf&2%ya& =0
o V.

(6)

From this equation all the succeeding expressions will be derived.

Tuo- and three~imensional l~sr equations, ~ + 1. - Since

equation (6) is obviously nonl~ar, additional assumptions must be
made to reduce it to a linear form. Clearly, these assumptions must
involve the relative ma~itudes of alJ.the terms in order to determine
which ones may be
set of &onditions

.

neglected. Perhaps one of the least restrictive
is that:

w

.

.,

. ~— . . . ———- ..—.—~.——— — –.—--. .—–-
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(a) The ratios of the perturbation velocities to
the free-s.tresmvelocity exe small enough to be
neglected when compared to one.

(b) The velocity gradients at a given point of
the flow field are ELU.of similsx magnitude.

Wit; the aid of these assumptions, it follows that, to the
order of the approximationsmade, the perturbation velocity potential
@ satifies the wel14nown linear equation

(7)

In the case of two-dimensional flow, the equation is tidependent of
y end thus maybe written in the form

(1 - Me’) 9= + qzz= o (8)

Two- aud three-dimensionalnonlinear equations, Mo=l.–

The study of equation (8) in both subsonic and supersonic flow has
shown that for arbitrary lifting surfaces or symmetrical nonlifting
airfoils the value of the induced velocitv u on the surface of a.

fixed geometric configuration is proportio@ to (I 1 – M# I)-1/2.
In s2J.airfoil problems? the value of u becomes infinitely large
as ~ approaches one, either from above or below, and the basic
assumptions are thus violated. Such a difficulty led Oswatitsch
and Wieghardt (reference 3) and Sauer (reference 4) to abandon the
restriction of linearity and to seek a more exact equation at ~ = 1.
Retaining the assum@ions underlying equation (6) and setting
Vo = a* where a* is the critical speed of sound, it follows that
at ~ = 1 the perturbation velocity potential satisfies the equation

(9)

Since fpx is much lerger than qz as the Mach number approaches
one, equation (9)may be further simplified to

(7+1) ~ ~ _q
Zz = o (lo)a* XXX

If, in three dimensions, the perturbation velocities do not
remain sma~, equation (6)again suppliee the necessary form of the
differential equation at ~ = 1. From the relation V. = a*, the

... ... . .. . . ---- .—— —— ——.— -——-.—. .s..—-. —--- . --.-.—— -- —--- -- —---
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6

required eqression

Wq q
~* x=

Two- end.three-dimensional lb33x equations, ~ = 1. -

Equation (10) has been used by von K&m& (reference 1) to est~blish
similarity rules for two-dimensional,transonic flow and is the basis
for work continuing at the present time. (See also reference 5.)
If at ~ = 1 the assumptions made in the linearization process still
hold, it follows from either equation (10) or (8) thatthe clifferential
equation reduces to the form

qzz = o (12)

It is possible, however, to predict independently from this relation
that linearized methods cannot be a~lied to the calculation of
arbitrary airfoil pressure distrihutions. The range of applic~il.ity
of such u equation is thus almost nonexistent. On the other bend,
the linearized form of equation (n) or (7) at M. = 1 is

b-Y+~zz=O (13)

and from this equation a class of nontrivial solutions can be
o%talned for IYU%icular boundex’yconditions. Both equations are
of psrabolic form in the number of dimensions for which they are
defined. ~ the present report, formal solutions satisfying the
imposed conditions w513 be obtained in three dimensions for flat
lifting’surfaces with swepkback leading edges and for an infinitely
long, symmetrical, swep&back wing.

Unsteady State

The derivation of the steady-tate equations for the velocity
potentiel was developed in some detail because of the vsrious results
to be obtained. Similar methods can be used when unsteady conditions
are to be considered, the differential eqution for the velocity
potentisl being now in the form

?,

.

-— .—.: ‘ -—— --,
.,.



HACA TN NO. 1824 7

where t? represents time. The details of the derivation can,
however, he avoided by refening directly to the equation satisfied
by the velocity potential.for the propagation of sound waves of
sti .am@itude. (See reference 6, p. k92.) b this form of the
equation the Cartesian coordinate system x, y, z is assumed fixed
in the medium so that ftre-treamvelocity is zero, while the wing,
which moves in the direction of the negative x axis with velocity
Vo, generates smalJ pressure disturbances. As a consequence, the
velocity potential of the field satisfies the well-known wave equation
in three space dimensions:

Equation (15) is reducible to canonical form by means of the
relation

and the three-dimensional form of the equation

while in the two-dimensional case independence
yields

PART II. TW04XMENSIONAL EIXEAR PROBIEMS

>1Unsteady State, & =

is therefore

(16)

with respect to y

(17)

FOR~NEKR ONE

It was potited out h the derivation of equation (12) that the
linear equation for the velocity potential is not applicable to air-
foil problems in eit~r the subsonic or supersonic regimes for ~
near one. The possibility st~ remains, however, of analyzing
unsteady flows durhg the period h which the perturbation velocities
remain small. As an example of such a problem, consider the case of
a flat lifting surface at a small.angle of attack a stsrting from
rest at a velocity V. near the speed of sound. The perturbation
potential for such a motion is equivalent to the change ti potential
brought about by an abrupt change a in angle of attack of an air-
foil fl@ng in a steady+tate condition at velocity equal toVo.

.

1 .
.-,

1

.

— . .— ——.—-— — .—. --—— - .— ~......— .-..—. ...—— —--—.—
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The chsmge in load distribtiion brought about by this maneuver is
the so-called tidicisl load distribution and a lmowledge of such
indicial functions is important for applications using operational
calculus.

——— characteristic traces Figures l(a) and l(b)
furnish an might into

x the nature of the boundary
conditions for airfoils
traveling, respectively,
at supersonic and subsonic
speeds. The chord iS ini–

tislly on the x axis with

t
leading edge at the origin
end trailing edge at

(a) Supersonic wing. x= co. With hcreasing
the, the ~ section

x travels 5n the negative
x direction smd sweeps
out a portion of the xt
plane as shown in the

/ figures (indicated by
shaded sreas). Through-

t
OUt this part Of thO
pl~ the boundary COIldi–

(b) SubSOniC wing.
tions require that the
tnduced vertical velocity

Figure l.– Boundary conditions for
is ~oa, while elsewhere

two-dinmnsional unsteady-lift
on the plane the induced
velocities are centinuous

problem. functions of z. In fi~
we 2, sketches of the

airfoil h the supersonic and subsonic cases are shown together
with indications of the manner in which the disturbance field
spreads. These wings are presented in xyz space with tm as
a parameter so that their coordinate system is not to he confused
with that of figme 1. The airfoils =e traveling from right to
left at Mach numbers of 0.8 in the subsonic case and 1.2 in the
supersonic case, and for a time corresponding to that required
for the wing to travel a distance of one-third chord length. At
t O cylindrical waves are induced at each disturbance point, that
is; at each point of the chord. These waves expand radially at the
center of the expanding waves moves relative to the initial disturb
ante point. At a given instant in time the entire disturbance region

.

.

/ I

—- ~=— ,--— —..—, ——,—— .
.,:...b..-b
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of the airfoil is

.

9
\

contained within the closed surfaces shown in the
figures, the outer surfaces correspondhg to the largest values of

/-7 ‘“’sO””

m..:-.’.... .:;, ,’ .+. . . . . . A;”
/

Supersonic ‘
//

/ /
/

Tigure 20- Sketch showing etient of disturbance fields after
travel of one-third chord len@h.

time. In the supersonic case, the pressure distribution over the
wing re’achesa steady+tate value as soon as the w- moves ahead of
the expanding cylindrical wave produced at t = O by the leading
edge. In the stisonic case, the wing never leaves the disturbance
field of the cylinders and, as will be seen later, the steady+tate -
pressure distribution is approached asymptotically.

It is apparent from equation ~17) that the characteristic cones
have sem}vertex angles equsl to @ and that the cones with vertices
on the xt plane have traces with slopes equal to *1. These cones
determine the upstream boundary of the field of influence of the
vertex point and their cross sections in the plane t = constant
are the disturbance regions of the cylindrical waves arising at the
vertex. Thus, perturbations in pressure produced initially at the
leading edge of-ths
modified coordinate
and traces x = ft.

wing section-are confined at later time, in the ~
sys~em, to the cone.with vertex at the origin

● .

.——. . —. .—... — ___ . -—-- —-- -— ——-— — -- -—. —--.- —- -.-—— — ----- -
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The solution of
under discussion has

equation (17)for
been indicated in

NACA TN NO. 1824 “

boundsry values of the type
reference 7 through considera-

tion of an anslogue problem in supersonic lifting+urface theory.
Thusj the shaded areas in figures 1(a) and l(b) sre thought ~f as
swept-forward li&ting surfaces situated in a stream directed along
the positive t sxis at a Mach nuniber ~ = ~. ~ boundary VdlleS
remain the same; that is, 92 =W= ~~ on the wing and ‘T’t,qy, qz
are centinuous functions of z elsewhere h the xt plane. In
lifting-surface terminology, the unsteady case for supersonic speed
becomes a whg with supersonic leading edge, while the case indicated
in fi~e l(b) tnvolves a subsonic leading edge.

The solution for the wing traveling at supersonic speed has been
given in reference 7 in a form vslid for all Mach nu.uibersgreater
than or equal to one.
where

differ analytically in
expressions are:

Region A (between

Region B (between

The expressions for load coefficient Ap/q,

various regions of the xt plane. These

lines x=~t, x=+)

lines x=-t, x=t, andx= coat)

Region C

From the
indicid lift

(between lines x =t, t= O,andx= Co+t )

AP ~

~=~

.

(18a)

(l&b)

(l&)

pressure distributions it is possible to calculate the
coefficient C&( t) as a function of ~ and t.

.

.

.— ._ ~ .-, , - .-— —.-. ,, .:. . . . .
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Since .

ths following results are obtained:

First time interval O <t <~
l+%

Second time interval ~ <t< ~
l+% M&l

(lga)

c

u

+ & A/t’- (co-tM#j

Third time titerval J!L<t
MO-l

c~(t)‘*

(lgb)’

(19C)

These results have been discussed in reference 7 for values of
~ greater than one. They still hold, however, for sonic flight
speeds and, in fact, can be reduced to the esqmessions:

First time interval O <t< ~ ‘

.

.

.-. —-F ---
..— — . . ..— — --— -—

-—— —---

.—. — ——. —.. —-

—.—
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c%(t) = 4

.

(20a)

Second time interval 52 <t
2

(c%(t) = $ ;
co-t

r)

!a-co
+arcsiIl —

t
+2—

=0
(20b)

The indicial lift coefficient is seen to be constant and equal to b
co

up to the-time t? = —
2a.

or up to the time required to travel on&hal.f

chord. Following this first time interval the indicial function risss
monotonically, reaching a infinitely large value as time increases.
The growth of ~(t) is, of course, in agreement with the fact that

the steady+tate ioad coefficient becomes infinitely large in linear

theory for %=1. This mesns that the theory cannot be used to predict
the complete extent of the C%(t) variation with time but that

during the earlier part of the motion the assumptions remain valid.

h figure 3; curves of C%(t)

are plotted as functions of
~t

‘%
for values of %=1 as given by
equations (20a), (20b), and
%=1.2, ~=1.4 as given by equations

(19a), (19b), and (19c). Also
included in the figure are variations
of CL (t) for ~=o as calculated

a
from Wagnerrs restits (reference 8)
by R. T. Jones (reference 9) and
also for

?
=0.8. The derivation

of’restits eading to the ~=0.8

curve will be given subsequently
ti this paper. The value of CL(t)

Figure 3.– Indicial.-lift-curve
slope for Mach numbers between

at M&3.4 for a short interval”

O and 1.4 shown to time required of time is also drawn. The dashed

to travel 12 half-cho~d lengths. portionE of the cwves were not
calculated but were drawn
with the known asymptotic
of the lift function.

to agree
value

-’

.

-r” . ..—---...—.... ..+.,,.. -...-, ,, -.,’
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Application of the indicial lift functi& at %=1.- Once the

indicial lift function is known, it is possible to determine the
lifi corresponding to a given variable motion. Consider, as an
idealized example, the case
where the airfoil experiences
an abrupt rising and sinking
motion at regular tbm inte~
Vals ● Such a motion involves
abrupt plus and minus angles
of attack without rotation or
pitching so that a(tt) is
given by the nmmder or squzme-
wave function shown in figure
h(a). ~ this example the
variation of a is such that
the curve for CL(t~) can be

calculated easily. ti figure
k(b) CL(tt) is shown for the
case h which the diticontb
uities occur at intervals of
time equal to co/’Vo,that is,

after each chord length of
travel. The principal point
of interest in this exaqple
is the fact that such a
motion yields no excessive
value of lift or perturbation
velocities and the entire
aIldySiS iS within the frame-
work of linear methods.

When the variable motion is more
coefficient cam be e~ressed by means

a(t’)

( ~, I
I 1 I I* t’1 I I
-

I

(a) Impressed angle of attack.

(b) Resulting variation of lifi.

Figure 4.- Lift resulting from
square-wave sngle-of-attack
variation.

complex in character the lift
of Duhamelts integral. Corre-

sponding to the angl&f-attack variation a(tt) as a %nct ion of
time, the lift coefficient %( tt) is given by the e~ression

J’C-L(t’)= A “at t ~(tr-T’) CZ (T’) dTr

o

(a)

In analysis related to equation (21) it is convenient to employ
techniques associated with the use,of the Iaplace transformation. (See
reference 10.) Thus, if the Laplace transfokm ?(s) of the function
f(t) is defined by the relation

.. -—-— .—..- ... —-- .--— ——.—- ---——- —.. - -.. ——--- ----- . .. ..e. -.- —. --——, -------- .-

.,
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?(6)

then equation (21) oen be

w

=
f

*t f(t) ate
o

,

rewritten in the farm .

C&3) = S-5(8 )Z(a) (22)

Consider now the caee Of a llfting flat @ate oscillating‘\
harmonically without pitcldng at a treguency m and mximum angle
of attack equal to a&. Setting

then equatiun (22) yields

.

By straightforuard manipul.ation, the inverse transformation of
equation (24) oan be shown to give

(23)

(24)
,,

&=4e~ {l+&-i~ [ckll%v,-Mat-v)]

where

v _@o _ @’co
2 2a.

.<.

.

.

——.. ..— — .——.,— -.. ..— —.—.— .— .;..,,. . ., ..,’...
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frequency

C(at-V), S(mt-V) are Fresnelts
integrals (reference I-1.).

NL(ti~v), %(ti, v) ae integrals
deftied in the appendix.

If the response to a c&ine
variation of a is required,
only the real part of equation
(25) iS used. Such a response
in the early stages of the
maneuver is shown h figure 5.
For very large values of time
CL as given by equation (25)

approaches the value

4-

CL2
a

o F1 8 Jo d

-2-

-4

i

Figure 5.– Lift resulting from
cosine=wave angle-of~ttack
variation.

CL (r-imt 1
4e

eiv—=
3m- )

erf&v (26)

from which both the
either an impressed

amplitude and phase shift of ~ resulting from

sine or cosine variation of a can be readily

6II

&-
(CJMA: initial value

I
99

(%4 _!_ _? ? ?4- $~. _’____

final due

.
0

Figure 6.-Amplitude of oscillatory lift resulting from a cosine
ang.le-of~ttack oscillation (without pitching) at ~ = 1.

... . -.. .—— ——-——— — —, .._- ——. — _c——--— —. ———— ----- — —-—-

., ----
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determined. Figure 6 shows the amplitude ‘oflift oscilddion corre-
sponding to conttiuous angl~f~ttack oscillation, as determined

1 from e@ation (26),plotted as
~.~ mac

“EL function of v = p . It iS

Cosat apparent that as o approaches
zero, CL approaches hrl?inity;

t that is, as the impressed wave
approaches the “step” function ~
(fig. 7), the lift coefficient
approaches inftiity. This
result is in agreement with
equation (20b) as t a~roaches

Figure 7.– Variation of cos at infwty. As the frequency
with t for various values of parameter V is tncreased,
a. however, the value of c&/*

is reduced and reaches a minimun of about 3.4 for a value of V = 0.9.
For a speed of sound around 1000 feet per second and a wing chord of
6 feet, this would correspond to a frequency of 47.7 cycles per second,
a value well within the range of practical flutter frequencies. It iS
interesting to note that figure 6 also shows that as the frequency of
oscillation beconms large (i.e., v>3) the value of c~l~

approaches the value 4. TMS is the same as the value for C~(t)

. I

.

.

in the early stages fo~owing a step variation of a.

Unsteady State, ~<1

It has been pointed out ~hat, in the determination of the
indicial lift function for a wing travelimg at subsonic speeds, the
lift~urface analogue involves the calculation of load distribution
over a swep=o~ wing with mibsonic edges. This mm that
recourse cannot be made in the solution to the simple source distri-
bution methti used in reference 7 to treat the ~~1 case. Since,
however, a portion of the leading,edge tithe present case is still
supersonic, the problem is particularly adapted to lift~urface
methods developed by Evvard in reference 12. Figure 8 indicates, as
in figure l(b), the geometry associated with the boundary conditions.
In the Eward analysis the solutions, as in the previous case, are
calculated for various regions. As en aid in identifying the different
results the sketch denotes these regions by Roman numerals.

.

i_ _ — ~— - . -,------- -.-– —..—. . ,..,
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The load distributions
and inaicial lift functions
will be given here for values
of t up to the time when
the characteristic from the
trailing edge first crosses
the leadin&edge trace, that
is, for

or

05t’%&%T

x

/

1 tt

This period covers the tima
in which the wing travels Figure 8.– Regions used in the

~/(1~) half chords and, study of subsonic unsteady lift. -

since the present smalysis
is concerned with values of Mach number near one, w~ in some cases
extend beyond the range of the linear theory.

The following results are obtained for load coefficient:

Region 1.(between lines x=t, t=O, and x=co-t)

Q4U=—
q%

Region II (between lines x=-~t, x=t, and x=co-t)

n?=%(&@+”ct” =

( 2C0
Region III between lines x=co-tj x=t, x=-t + —

)

I+&’ m
co

‘=~

(27a)

(27b)

1
_.. —... — —.—. .— —. ———-— .—— — .—. ..—
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Region IV (between lines x=t, ~co~tj d X=co-t)

‘K”cs’m&&c (27d)
~

( +$

co
Region V between lines x= 4 + *, X=co+tj and t = ~

l+%

Ap 16

]–[

twx’fl—-- EE’(V,kt)- EE($,k’) + KF(~,kt)
~— = JC2(1+W) x+~t 2 1

at Au 2A( l+)
-—

*
UC sin:+— arc sin% (l+MJt ‘2%H’FRE

(27e)

where

2c~

(t+x) (l+%)

.

.

,- —-——-..-7.- . -...-. .,
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[ 1J&’ x
\

{

(Uwl)(l+)[(v+ll( l+%)-ofi l+al[v(l+%)+ofa( l+)l ~v=
8ie

[V(l+%J-O JZ’+VL(l+)] [U(HJJ-VJ1+I$JI 1
where

F($,k)
E(~,k) }

K, E

incomplete elliptic integrals

complete elliptic integrals

ti figure 9(a) the growth of pressure distribti@ with t@e is
shown at stisonfc speed for the period of time covered ly equations (27).
For purposes of comparison,
pressure changes calculated
from equations (18) are shown
in figure 9(b) for supersonic
flight velocities.

Equations (27) suffice
to determine the titial
growth of indicial 1~ coeffi-
cient at subsonic speeds.
Such results were given in
figure 3 at ~=0.8 tiong

with th ~c~ted growth
for alout onB chord len@h
of travel at ~=o. 4. The

value of ~(t) at t=o

is, for all flight speeds,
equal to 4/~.

AP AP
7

F

7
:1+---
:1

t it
/

$

(a) Subsonic. (b) Sup~rsonic.

Figure 9.– Pressure distribution on
wings receiving sudden angle-of-
attack change at t = O.

II@ressions for C~(t ) are as follows:

First time interval O <t< ~
l+%

.

-.. ----- —.----— —~—-- ----- -— 7 —-— -——— -— --—
~— --—— ————-—-————- ——— ---
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.fl(t-%J+=&t (l+~)+col [2co-t(l*2) 1

+ 4CO+(1+MJ

l+% “c’”%%

where
()

As
qa ~

is given by equation (27e).

PART III - TEREFAIIMENSIONALLINEAR FROBIJW FOR ~ NEAR ONE

Steady State

General solutions for arbitrary Mach numbers.- Two methods of

attack are available for the solution of linearized problems at sonic
speeds. lh the first place, solutions to equation {13) can be
written formlly and the extent to which these solutions satisfy the
original assumption can then he investigated. ~ the second place,
general solukions of equation (7) can be studied in the limit as ~
approaches 1. Since this latter method furnishes added information
concerning the variation of th variables with ~, it wilJ.be used
first ●

ax

.

.

. ,.. - ..-. — _ —— -.
:“.
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In linearized theory the bolmamypd ue problems of wing theory
are concerned with two separate properties of the wing: the thickness
effects and the effects produced by the twist, cmiber, and angle of
attack. The first is called the nonlifting case and the second is
the lifting case. Solutions of equation (7) for ~S 1 are given
in reference (13) as follows:

In the nonlifting case

ffJ( AWO(X1,Yl)dxldyl
q(x,y,z) = - & (29)

T x-xl)2+2(~1 )2+=’22

Jwhere ~ = %2-1 and Awo = 2W0 where

bation velocity on the wing and therefore
slope of the wing surface relative to the
region T is the aea on the wing within
point x, y, z.

h the lifting case

Wo is the ~erti~ pert-
related directly to the
x =is. The integration
the Mach forecone frou the ‘

(30)

where Aqo is the jump in the value of the velocity potential in
the @ane of the wing. The sign ~—” denotes “finite par-t”of
the integral and introduces special integration techniques. (See
reference 13.)

Equation (29) e~resses the velocity potential for the symmetri-
cal wing in terms of an integal tivolving supersonic source distri-
butions while equation (30) employs doublet distributions. W the
two caees the distributions are determined from the geometry and the
load distribtiion over the wing,respectively.

Source and do~let distribution effectiveness at infinity.- It

is well known that the lift, drag, and pitching moment of a given wing
my be cal.ctlatbdeither from direct integration of the local ~essures
on the wing or by means of momentum considerateions where the induced
velocities of the wing are determined at an infinite distance smd
the destied forces are related td an inte~ation over a control surface

- _ -—.——.—.— __ .,_ _ . . .. .—. ..+..._



——. —-. —.- .. .. ....- ...-— ----- .. . . . —.

22 NACA TN NO. 1824

enclosing the wing. h the three following sections the latter
approach will be considered and the limiting value of drag at %=1
computed. @e initial portion of this theory requires the evaluation
of source and doublet effectiveness at infinity and the concept of
equi~ent source position, an idea which appears to have been given
first byW. D. Hayes in reference 14.

Consider, as in figure 10, a point P with coordinates x, y, z
lying within the induced field of a supersonic wing. The Mach fore-
cone from P is given by the relation

x-xl = 13J(y~l)2 + (2--21)=’ (31)

where xl, yl, Z1 are running coordinates of a point on the surface
of the cone. btroducimg polar
coordinates

%$y,z) “ ‘ P

r
x

Y =rcose,z=rsine

and rewriting the abscissa of
P in the form

x= xo+lh

it follows that the trace of

the forecone in the Z1=O
pl.saeis, in the limit as r
approaches infinity,

Figure 10.– Coordinates used in
study of supersonic source. xl = pylcos e+ X. (32)

It is, moreover, possible to show that the effect on the velocity
potential at the point P as r approaches infinity is the same
for all points (Xl, Yl, O) for which xl~ylcose. constant. The
value of this effect is

(p. 1

21tJ2f3r(~-x=+~y~cos0)

and follows from the asymptotic evaluation of the
potential

~=
1

2T(J(x%=)2+2(y-y=)2+ 22

(33)

supersonic source

.

..——.—-. -. ——. .... —... -—-. -—. . . .,
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for lexge vslues of r. The potential at P for the source at
(x=,y,, O) is thus the ssme as for the source shifted along the
trace to (xl~ylcos 0, 0,0), the intercept of the trace on the x
axis. I?orMach numbers near one, equation (33) cen be rewritten

(34)

and is equivalent to the potential at P for the source at (x=, O, O).
The induced velocities at P due to a source at (xl, yl, O) follow
immediately, for arbitrary ~ and for ~ nesr one, from the
gradients of 9 in equations (33) and (34). It is hportant to note
that equation (33) is a function of the azimuthal angle of P so
t~t, in general, a source does not have a fixed equivalentposition
with respect to its potential at infinity; equation (34), however,
is independent of the azimuth e.

The souc=hk~otential is applicable to the study of
symmetrical nonlifbingwimgs. When lifiing surfaces are tobe analyzed,
the doublet potential

v= f32z

2d(x+Kl)2+2(Y%d2+2z2]3/2

must be considered and the question of equivalent doublet position
with respect to the potential at infinity arises. lhthis case the
doublet position can againbe shifted paraU.el to the trace of the
Wch cone from’P at infinity and the potential at P is givenby
the expression

and,

body

for Mach nunibersnear one,

‘?=
t92z

Z%[2@(~=l)13\2

Momentum relations.- The vectoriel force

inside a control surface S is given by

(35)

(36)

$— on an aerodynamic

the surface in.te~al

. —-. .—.— ... ____ _._.,. -—— -—-. —----- ——. .... . ..._ ... ... .. . - —.. . -. .
,-,
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where vector notation is used end

o subscript indicating free-stream condition

P)P local static pressure and density
->
v local perturbation velocity vector

For the purposes of the present report, equation (37) will be
modified accordimg to the assumptions of ltiearized theory and the
surface S restricted to a semi-infinite circular cylinder of
radius r, ‘itsaxis of symmetry ly~ along the x axis, and with one
face in the x=O plane while the other face is at x=constant. (See
figure il.)

From linearized theory,

P—=
Po 1-%2;

and

P- Po=-
[ 1p. VOU+*U’+V’+W’) ++ poM&u2

z ,

The end faces of the cylinder

u
r may be denoted, as in the

m
x figure, by 1, II, end the

I / curved surface by III. Then in
supersonic flow, if a distrib~
tion of sources is restricted
to a region downstream of I,
the drag D on the body corre-

Figure H.–
spending to the source distribu-

Surfaces used h study tion is givenby the expression
of momentum.

.

.. -— ..— — ————— . , . — —..—.-,, -, , ,..
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.

D1=-
f f[2P0 = (l&-l) u2+v2+w2] -oJmJ “vrme&(,,,

where Vr is the radial component of
10ss in generality results, moreomr,

infinitely distant downstream and the

the perturbation velocity. No

if the surface II is moved

radius of the cylinder is made

arbitrarfiy large. The notation II and III will henceforth refer to
this particular configuration.

If the drag of a lifting surface is to be calculated, the
surface aud its vorticity wake are replaced by doublet distributions
aud in that case the integral over region II in eqution (38) is
called the vortex drag of- the body w~le region III yields the
wave drag. It has also been shown (see, for example, reference 17)
that the vortex drag of a supersonic wing ds a function only of its
span load distribution and is equal to the induced drag at subsonic
speeds for the same span loading. H a finite nonlifting body is
considered, each of the velocity components in region II is attenuated
in such a mnner that its contribution to the vortex drag is zero.
The integration over region III again provides the wave drag for the
nonlifting body.

The combination of the results given h this - the last
secticm provides a method for finding the wave drag of an srbitrary
body. The first step is the determination of the sourc=ink or .

doublet distribution corresponding to the body ad then, by Mam of
the principle of equivalent positions,,the sources or doublets are
moved to the x axis. The wave drag is-~hen calculated from equa-
tion (38) once the induced velocities on the control surface are
l&lowno h the next section the wave drag will be written in a
different form and the drag at sonic speeds will be investigated.

-Y
This analysis will also provide
some insight into the range of
validity of the sonic theory.

Evaluation of wave drag as
M order to

study the drag of a symmetrical
body at zero angle of attack, it
is convenient to oonsider the
general expression for the velocity

7
potential given in equation (29).
lhtroducing first the transform-
ation(fig. 1.2)

Figure 12.- System of axes in
transformation equation (39).

.*
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E = -yltany+xl
1

l-l = yl sec v J

ltACA‘illNO. 1824

,

(39)

where

tmu=f3c06e

equation (29) becomes

Since, however, it has been shown that q evaluated infinitely far
may from the wing does not change if a source is moved along the
Une &=comtmt, it follows that the source strengths can be
integrated along these lWS. The second integration is then along
WI where, from equation (39), E-vi and the value of the ~tential.
at an fnf~te dist~e f6

q)(x,y, z) = - * JJ’””’”F””-l’”Cos(X+g+z’J -o(%n)dv

Setting

f(x>,p) =-cos~
[

Awo(xl,q)dq

it follows that

(40)

and this is the sam as the Iotential for a body of revolution with
source strength per unit length given by f(xl). The induced velocities
correspon&@ to the potential.in equation (b) are found to be after

~
ftist integrating by parts and using th notation ahl f(xl,p =
ft(xl,u) together with the relation f(Ojw) = O,

.

——. . . . . . .. .—. . . . . . . .,_.
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b

Asymptotic values of the velocity components for large
are readily seen to be, after first setting x-~o+fk,

and

.

Equations (43) and (44) maybe used together with

to give for the value of drag the expression

(41)

(42)

values of r

(43)

(44)

equation (38)

Assuming that the
x> 1 reversal of

body is of finite length so that ft(x)=O for
the order of integration yields the relation

.
.

.

.
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E equation (h6) had been derived for a body of revolution, then
f(x) would have been independent of the angle w and in that case
the-qession for drag would reduce to the form

22

L/’-20 0
fqxJfqx2)2nlxl-x2 I&ax= (4-6a)

1824

This expression was givenby von Karmn in reference 15.

For the study of the drag of a lifting surface, consider now the
genersl expression for the velocity potential-givenby equation (30).
The doublet distribution occupies in this
and the wake since the jump h q exists
By use of the trsmsformations in equation

case both the wing plan form
elso in the vortex wake.
(39), equation (30) becomes

\

q)(x,y,z) =

and, exactly as in

reduced to

the ease of the source distribution, this can be

$22
Cp(x,y,z)== If Cos

[(X+Z=)%%2Z21s/2
P

f
A9(x1,q)dq

Setting

g(xl,v) = Cos p
f

Aq(xl,~)dq

it follows that

p% sin e b
x-@r

Q(x,r,e) = ~
g(xl,p)axl

(x-x~)2#r2 1“/’
o

..

.

.

.

... —— _. ~ .. ... ..=. .— -—
,, ,.
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Iirtegratin.gby parts and using the fact that g(O,p)=O

(X-xz)g’(q,v)dq \

J(x-x+p’r’

}

.

29

(47)

where gt(xl,~) indicates ~ f3(%v).
ax=

Setting x = xo+pr and

(48) ,

letting r approach infinity, the asymptotic expressions for
equations (47) ti (48) beconm, if gl(O,V) = O,

and

Sh e n ‘o
Vr=— Bp g$$(xl,~)axl

211 Z!F
0

The relations just derived mybe

equation (38) to give the wave drag of
result takes the form

Jxo-xl

used h conjunction

a lifting smface.

(49)

(50)

with

This

t

JXoa Jo Jxo-x’

(51)

-. --— . .-+ .. _.. ._. . _.._-_. —— ._. . .. . ... . _._—. – —.–-
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In the wake of a lifting wing the function gtt(xl,~) =0 and if,
moreover,

co

f
g~t(xl,~)dxl = g?(co,w) - gf(o,v) = o

0

reversal of integration ti equation (51) yields the simpler expression

o 00

It is possible to draw some
(k6) and (52) regsxding the wave
revolution without the necessity

IIg~*(xl,~)gt~(x2,~)2n X1-X2 axl dxz

general conclusions from
drag of wings and bodies
of detailed ap@ications

confipyrations. It is a~rent”immediately from equation

(52)

equations
of
to particular
(46a) that

the w~ve drag of a body ~f revolution at zero angle of attack is
independent of I&ch nuniber. This conclusion does not apply, however,
to the nonlifting wing stice the distribtiion function f(x,p) in
equation (M) contains tha variable w which, in turn, is a function
of both 19 and ~. As M. approaches one, the study of the now
lift~ wing is divided most conveniently into two parts,depending on
the behavior of f(x,p).

Consider first the more general situation in which f(x,p) is
not zero; that is, the case in which the nuuiberof sources does not
equal the nuniberof sinks along the line ~ = constant. This means,
when ~isl, that an unequal nuber of sources and sinks appem in
the trsmsverse or yz plane sad, if equation (k6) is applied, either
a finite or a infinite value of drag can result. The limiting value
of drag at sonic speed, obtained from integrations of surface pressures,
was given by Stewart and Fuckett in reference (16) for several wing
plan forms, all.of which had nonvanishing values of f(x,u). If the
pressure distribution is calculated, however, the local pressure
coefficients are seen to become-infinitely large as sonic speed is
reached, even for the body of revolution, so that the assumptions
of the linear theory are violated and the reliability of the drag
predictedby equation (k6) can inno case be assessed even though
the predicted values renmin finite. Equation (43) shows also that
when control-urface methcds sre used to compute drag at ~ = 1,

.

.
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.

the x component of induced velocity increases indefinitelywhen
f(x,p) is not zero and that the theory is, therefore, no longer
consistent.

k the very special second case, that is, when f(x,p) vanishes
for all values of 19, the analysis just prasented breaks down at
equation (40). It is clear, however, that in this case there are
equal nunibersof sources smd sinks in the g = constant plane W
the behavior of the flow field at infinity is, therefore, exactly
the same as that which would have been produced by a distribtiion
of doublets. Equations (49) md (50)give the velocities induced
at infinity by an arbitrary doublet distribution. These,induced
velocity components are, in terms of ~, one degree higher than the
similar components for the nonlifting case. The values of both
u and Vr can thus be expected to approach zero for alJ values of
~ as r approaches infinity for any flow field generated entirely
by doublets or by an equal nuder of sources and sinks. It fo12.ows
then that the linearized theo~ for lifiing surfaces (generated
entirely by doublets) and for bodies with thickness distributions
such that f(x,~) vanishes (generatedby an equal nuniberof sources
anasix in all 2= constant planes) is entirely consistent as
M. approaches one and, in particular, for ~ equal to one. ‘I!his
being true, it follows immediately from equation (52) that the wave
drag of a lifting system is zero at sonic speed.

Thickness solutions at ~ = l.– A swep~ack wing of constant

chord and infinite aspect ratio is an example of a practical aero-
_C shape for w~ch an eqti nmber of sources and sinks occur
in every yz plane. (See fig. 13.) Consider the case in which the
wing cross section is diamond shaped with a slope equal to h in a
plane normal to the leadimg edge. ‘Then,in a transverse plane,
(section BB of fig. 13) W. equals tQo?I.cos V, the minus and plus
signs app~respectivel~, to the left and right of the ridge line.
Accordingly, the solution of the problem can be written in terms
of a distribution of somces, thus

f

x cot +

T=-&, VOA cos w Zn [(Y-Y1)2+Z21 dyl
\

( co
x )-— Cotv

2 Cos $

J( co
1 ‘+2COSV )

cot *

‘z VOX cos * 2n [(y-yl)2+z2]dy= (53)
x cot $

-. —.-....—— .—. - .—-y .— -—— . .- -—- ——,— ..=— — .—— -.—. . . . .... . .
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*

tan 81= Aces q

Section A-A

tan /$= Asin *

Section BbB

y =(x

Figure 13.-Views of ~inite swept wing showing coordinates.

The value of &P~x can immediatelybe found to be

2=(2:3’
,n{[+M%.. &T’z’}{[,-(’-2::s,)+12+.2}

{[4+1’+.’} {[,-(.+)12 +4
(54)

from which -itis apparent that as r = ~~ becomes infinitely
lsxge, &@x approaches zero. In the @ane of the airfoil, that
is, for z = O, aqlax becomes

———., -,- :, .,. ,---
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and, using the definition for pressure coefficient, = -~,
this becomes

%
o“

1

[L
-co 2

%
..s~n 2

)1
-1

sinv - X COB *
(55)

Equation(55) can be derived by entirely different mathods.
Perhaps the most direct of these alternative derivations is the one
introduced byR. T. Jones in reference 18. The general statement used
in that report is that the component of translational velocity of a
cyl.indficalbody in the direction of its long axis has no effect on
the motion of a frictionless fluid. Hence, the pressures over the
wing shown in figure 13 are the same as those over awing moving
normal to a free stream with a velocity V_.cos ~. Using the Prandtl-
Glauert correction to the thin airfoil solution of a two-dimensional,

. diamond~hhped, nonlifting section exposed to a free stream with
velocity V. cos jr,one obtains, for ~ cos Wl,

1
co/2 -

Wo
9=-L 2n[(xt=1’ )2+z21dxz’ (56)

2s 4./2 ~m

where W. is the vertical induced velocity on the upper side of the
= O plane and x~ is measured normal to the leading edge. If

;his solution is referred to the axial system of figure 13 by the

.

transformation

and the integration
with respect to x,
is

xl =XCOSIJ -ysin$

is performed after taking the partial derivative
the resultsmt expression for pressure coefficient

[L
~co

in
2

Cosly-ysin$

2“

)1
-1 (57)
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At sonic speed this equation reduces immediately to

[(
1
— co 2

.–*zn 2
CXJ )1

-1
x Cos q –ysinlJr (58)

which is identical to equation (55). The result expressed by the two
equations is, of course, not new. The significant point is that the
same variation h pressure coefficient was obtained by two widely
different avenues of approach and that the result obtained from the
particular methods applicable to sonic speed theory is in agreement
with that derived from more conventional analysis.

Lifiing+tiace solutions at ~ = 1;- It should be mentioned at

this point that Robinson and Young (reference 19) have shown by meam
of linearized theory that supersonic triangular wings and subsonic
elliptical wings of the same aspect ratio have values of lift-curve
slope which approach a commn and finite limit as & = 1. The
present section of this repoti is concerned only with the study of
lifting surfaces at a fixed sonic velocity but the results to be
obtained are in agreement with the lhiting values of reference 19.

“

.

A further application of the results in this section ceabe
made to the case of very low aspect ratio wings at arbitrary Mach
.nunibers.This viewpoint of the theo~was first presentedby
R. T. Jones in reference 20 ad applied to triangularwings while
in reference 21.etiension was made to include pointed wings on
slender bodies of revolution. This duality of interpretation,that
is, to all aspect ratios at sonic speed or low aspect ratios at all
Mach numbers, applies to all solutions of thre~nsional problems
obtained from equation (13). h the subsequent analysis,attention
will be confined to swept~ack plau forms of lifting surfaces with
pointed vertices and thus doublets will be used exclusively.

In application, the two types of boundary conditions to be
considered are as follows:

1. Bo~lue problem of the first -, loading specified.- o

It is given that Aun = ~,-u, = O over the ~ plane exceut for
the region occupied %y th& w&g where ~ . -%2-= Au. . f~x,y), “

the function being determined by the specified load@. Over all
of the w plane, the imposed conditions are Awo = O.

.

~——— - ..— .-, . - —-—
. ..-. , ,.
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2. Boundary-mlue problem of the second kind, surface specified.–

Over the xy plane, the imposed conditions are Awo = O every-
where and, except for the region occupied by the wing, Auo = 0.
Over the region occupied by the wing W. = Wu = W7 = f(x,y) wh3re

f(x,y) is determhed by known canberj twist, and angle of incidence.
(The delta notation again imdicates the jw in the value of th

variable at the z = O plane.
Subscripts u and 2 indi-
cate conditions on the upper
and lower sdrface, respec-
tively, of this plme.)

The uature of the differential
equation shows that the value of V
is a consequence of boundary condi-
tions along lateral strips. If, as
in figure 14, the two leading
edges are given by the expressions
Y= b=(x) and y= bz(x), the
velocity potential is express-d
ible in the form Figure 14.– Swept-back plen

form with curved trailing
edge.

J
b= ~o(x,yl)dyl

q(x,Y,z) =&
bl (Y–Y1)2+Z2

(59)

If the boundary&alue problem is one of the
general expression for q follows from a direct
noting that

PY
A~o(x,y) = jb= Auo(x,yl)dyl

ftist Wnd, the
integration after

(60)

Since, moreover, load coefficient Ap/q is related to Au. by means
of the equation

it follows that the velocity potential Q canbe found for any
prescribed load distribution of a given plan form. The value of
vertical induced velocity, evaluated at z = O, then suffices to
calculate the twist and angle of attack of the wing.

. . .— ———. ____ ——. . —. .. _____ _.+ ________ _ .-.._. -
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If the boundary-value problem is one of the second kind, the
vertical induced velocity is given on the wing and the load distri-
bution is to be found. In this case the use of equation (59) leads
to the consideration of an integral equation. Since, however, this
inte~al eqmtion is a common one in aerodynamic theory, certain
established methcds may be applied to it.

After noting that Aqo(x,y) = O at the leading edge, integr-

ationby parts and titroduction of the relation

yields for perturbation potential the expression

f

b2
1 Y–Yl

~=z
A~o(x,yl)arc tan~ dyl

bl
(61)

In the limit as z approaches zero
to z reduces to the form

1
f

b

wo=—~
4

the derivative

AVO(X,Y1)QI

Y-Y1

of q with respect

(62)

For a given distribution of W. over the plan form of the wing,
equation (62) represents an integral equation to be solved for
Avo(x,y) subject only to the condition that the Kutta40ukowski
condition is satisfied at all subsonictrailing edges. Once Avo(x,y) ,
is determined it follows that ‘

f

Y
Aqo = Avo(x,yl)dyl

4
(63)

(64)

D the present report the solution to the wing plan form shown ‘
in figure 15 will be presented. The value of A90 which satisfies

——-— .——- . . . .—— .- .. —-—
.. . . ---,.
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equation (62) is, h region I

A9= -2w0 JX2 tanz e-p

and in region 2

[

.

A9 = –2w0 x tfie E(~o,~) –koi2F(~o, ko)1
where E and F are defined in the appendix and

“0=“c“m
%)’ ‘*’J=

The equation y = al(x) of
the trailing edge for which
equation (66) is valid is
given by the formula

(69)

Reaions

-1

where

(65)

(66)

(67)

(68)

which expresses al expli-
citly as a function of

(Xze)gThis partic-

~ar choice of trailing-
edge shape was used to
simplify the analysis. The
resulting plan form approaches
increases. The variation of al with x is given-in figure 16; w
figure 17 shows the relation between aspect ratio and span.

rs+

o
x

Figure 15.- Dhensions end regions
used in discussion of swept~ack
wings.

a constant-chordwing as the span

The loading coefficient is given in the two regions (degined in
fig. 15) as follows:

..— .— —. . . ..— ..—-...— —— .. ... . . ------ .- ---. ,--- .—,.
,,”, ..’
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.
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Figure 16.– Graph showing trailh.g-
ed.geposition of the swept~ack
wings studied.

8

Region 2

0

5

A

/

/ ‘/
, ‘ 10 14 18 22 2.6

so
Cotane

Region 1

AP 4x tan2 e—=
qa

Figure 17.– Relation between
aspect ratio and wing se~-
Span.

.

(70)

L52-zwfko)]‘p)
This load distribution is shown in figure 18 for a triangulex and a
swept-backwing. It is seen that the load= at sonic speed bears
a close reseniblanceto those found at higher Mach numbers. Two
similarities of note are tbs discontinuity in the pressure gradient
at the Mach wave originating from the trailing edge of the root
chord ad the satisfying of the Kutta condition only where the
trailing edge is subsonic. The lift and induced drag coefficients
are given, respectively, by

— ..——— ~--- –——.- .,..- -,-
.. ... . ... . -------
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—’=+-3)CL
atane

AP

7jza

v\x
back wings at ~ = 1.

.

%1

[
.& -*-

0% tszle t= e 4

where

Figure 18. Pressure distributions for triangular and Swepk

‘f&%%l
(73)

These coefficients are plotted as a function of A/tan e in figure 19.
It is shown that the values of ~i/a2 tan e and CLi/a tan e for

finite aspect ratio swept~ack wings are always less than the corre-
apondingvalues for the triangular wing (A/tan e = 4).

.— .-. —,. . -— . _ .—___ . .. . .-.. _ _____ .__. . .. . . -
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When the span of the swe~ack wing becomes very large, the

8 G.

/
‘a tan9

,6 ~ ‘- - — + — — — — —.

4 —% ~
/we\ ,-

2

0
4 44 4.8 5.2 5.6 6.0

A
Gt7

Figure 19.– Variation of lift

Ames

al

a.

a

a*

A

and drag with aspect ratio for
a swept~ack wing at ~ = 1.

Aeronautical Laboratory,

slope of the traili& edge
approaches asymptotically the
slope of the leading edge. It
follows that for infinitely
large aspect ratio the limiting
value of the load distribution
on the outboard sections should
approach the value given by
simple sweep theory for an
infinitely long sweptiack
lii%ing surface with constant
chord. This result is, in
fact, a consequence of equa-
tion (71).

National Advisory Com&ttee for Aeronautics,
Moffett Field, Calif.

.

IIPPENDm

LIST OF IMFORTANT SYMBOIS

y coordinate of trail= edge, y = al(x)

fremtream speed of sound

local speed of sound .

critical speed of sound

aspect ratio
[

(span)’

(wing area) 1

-r - ‘—
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c(u)

co

CL

c%
C%(t)

cDi

D

Di

erf(x)

Kn

~’, En’

%

kin

z

(f
u

Fresnelis cosine integral Cos; x%

o )

wing root chord

lift coefficient
[

lift

q(~ ~ea) 1

dCL

z

indicial lift coefficient

induced drag coefficient
[

Di

q(wtng area) 1

drag

induced drag

error function of

elliptic integral

E(;, ~)

elliptic integral

-.

u*n
of first kind

J’ )
o

F(;,~)

elliptic tite~als with moduli k ?n

modulus of elliptic functions

m

length of body

#..-. ..— ——.— ,., —.. .—— .— ___ _ . . . ..- _...- -- .-—--.—— —_- .—...— ._.
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MO

Nl(ut,v)

r,e

s

s

‘o

t?

t

to

U,v,w

v

Vo

NACA ~No. i824

free-stream Mach nmiber
()
‘a
a.

r6 [.0s x=’ c(mt-x?) - sin x’s(ut-x’) ] ax .

‘6 “L

J.&[ 1
Cos X’s(mt-e) + sin # C(mt–+) dx

loading coefficient (pressure on lower surface
minus pressure on upper surface divided by free-
stresm dynamic pressure)

free-stream dynamic pressure
(

~p V2
200 )

polxm coordinates in yz plane (y = r cos 0, z = r sinO)

(f
u

I!Yesnel?ssine integrsl
m

sin~xadx
)

o

operational equivalent of t

wing semispan

time

aot T

msximumdistance measured parallel to y sxis from
x axis to trail-tagedge (fig. 15)

perturbation velocity components in x,y, z directions,

respect ively

local velocity

fres-stream velocity

.. . . .. - ~— c -— --..—- —-——
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-, . . ,- . . . . . .
‘r

x,y,z

a

raalm. component or pertur~atzon velocity

Cartesisn coordinates

angle of attack in radians

v

Po

#

v

(J)?

u)

ratio of specific heats, ”for air 7 = 1.4

discontinuity in component h z = O plane

semivertex angle of swept back wtng

free-tream density

total velocity potential.

perturbation velocity potential

impressed frequency (reference to true time)
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